PROGRAM STRUCTURE

Module 1	What is IoT, and why is it important?
Introduction to IoT	What are embedded systems?
and Embedded	Fundamentals of Physical Interfacing. Connecting Input Devices, Advanced
Systems	Physical Interfacing
	Circuit Prototyping techniques,
	Communication protocols for interfacing different blocks,
	UART, I2C, SPI, CAN, RS232, RS422, RS485, MODBUS
Module 2	Python basics, Programming SBC (Orange PI, Raspberry Pi)
Programming the	Data acquisition and sensor integration.
Things	Graphical approach: Node Red,
	NodeMCU
Module 3	IoT communication protocols (MQTT, CoAP, HTTP).
Things	Wireless communication standards (Wi-Fi, Bluetooth, LoRaWAN, Zigbee).
Communication	IoT device management and security.
	Connecting embedded systems to the Internet
Module 4	Cloud platforms for IoT (AWS IoT, Azure IoT).
Designing IoT	Introduction to Event-Driven IoT
Architecture	Understanding event-driven architecture.
	Key concepts: events, publishers, subscribers.
	Event-driven vs. traditional IoT systems.
	Use cases and benefits of event driven IoT.
	Designing server
	Scalability of servers
Module 5	IoT device integration.
Managing the Things	Onboarding, Access controls
and Data Analytics	Real-time analytics and dashboards.

Physical Design	Basic Arduino UNo Thinker CAD simulator
	General I/O: UART, I2C, SPI, PWM, ADC, DAC, Digital I/O
	Basic Electronics
	Actuations: Motor, Stepper Motor, DC Motor, BLDC motor
Network Design	ESP32, Raspberry PI
	HTTS, RESTAPI, MQTT, AMQP, COAP, DDS, XMPP
	Wi-Fi, Bluetooth, LoRA, Zigbee, IPV4, IPV6, SDN
	Virtualization Technology: VM Hypervisor, Docker
Logical Design	Python Basic Programming Fundamentals
	Data Visualization, Data Analytics
	IoT Dashboard Design Technology
	Thinks Speak Cloud, AWS Cloud, Azure Cloud, Google Cloud
	Kubernetes, Flask, and Django Web development frameworks
Use cases and	Energy monitoring, Vehicle tracking systems, Smart cities projects, Smart
Demonstrations	Aquaculture.