
 
 
 
 

 
  

 

Visit to  
Neural Network to 

Deep Learning 
 

 

 R. K. Agrawal 

School of Computer and Systems Sciences 

Jawaharlal Nehru University 

NewDelhi-110067 

  

 
1 9/16/2018 



Outline 

 

• Typical goal of machine Learning 

• Neural Network 

• Deep learning 

• Some common deep learning algorithms 
 
 
 
 

*Many of slides adapted from Andrew Ng and G . Hinton 
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Typical goal of machine learning 

Label: “Motorcycle” 
Suggest tags 
Image search 
… 

Speech recognition 
Music classification 
Speaker identification 
… 

Web search 
Anti-spam 
Machine translation 
…  

text 

audio 

images/video 

input output 

ML 

ML 

ML 
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ML 
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Feature engineering: 
most time consuming! 
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Kaalia Amitabh Bachchan Dialogues.mp3


Our goal in object classification 

“motorcycle” ML 
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Face Recognition 



 Fingerprint recognition 
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Optical Character Recognition 

A

B

E

D

C

Output  
Layer

Input  
Layer

Hidden 
Layer



Detection of Oil Slicks 
 

• Given radar satellite images of coastal waters 

    Problem: Detect Oil Slicks 
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Apple 
 
Banana 
 
Mango 
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Apple 
 
Banana 
 
Mango 

Fruit 

Name of Fruit 

f(Fruit)        Name of Fruit 



Classification 

Feature Vector Fruit_type 

Color Shape 

Red Elliptical Apple 

Yellow Elongated Banana 

Yellow Elliptical Mango 

Green Elliptical 
 

Mango 

Green Elongated 
 

Banana 
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f(Feature_vec)                    Fruit_type 
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Classification: Definition 

• Given a collection of records (training set ) 
• Each record contains a set of attributes, one of the attributes is the 

class label. 

 

• Find a model  for class attribute as a function of the 
values of other attributes. 

 

• Goal: previously unseen records should be assigned 
a class as accurately as possible. 

YX :q
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Neural Network 



02211 wwxwxwxz KK  

Elements of Neural Network  

𝑓: 𝑅𝐾 → 𝑅 

z

1w

2w

Kw…
 

1x

2x

Kx



0w

bias 

Activation 
function weights 

Neuron 

h(z) 
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Single Perceptron  

z

1w

2w

Kw…
 

1x

2x

Kx



0w               1 if  wi xi > 0 
 h(z)= 
              0  otherwise 

h(z) 
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Training Perceptrons 

•Initialize with random weight values 

th= 0.0 

X2 

X1 

X0 

W0 = ? 

W2 = ? 

W1 = ? 

For AND 

X1  X2     y 

0    0     0 

0    1     0 

1    0     0 

1    1     1 
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Training Perceptrons 

th= 0.0 

X2 

X1 

X0 

W0 = -0.3 

W2 = -0.4 

W1 = 0.5 

X0 X1 X2 Summation Output 

1 0 0 (-1*0.3) + (0*0.5) + (0*-0.4) = -0.3 0 

1 0 1 (-1*0.3) + (0*0.5) + (1*-0.4) = -0.7 0 

1 1 0 (-1*0.3) + (1*0.5) + (0*-0.4) = 0.2 1 

1 1 1 (-1*0.3) + (1*0.5) + (1*-0.4) = -0.2 0 

 

For AND 

X1  X2     y 

0    0     0 

0    1     0 

1    0     0 

1    1     1 
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Gradient Descent Learning Rule 

• Train the wi’s such that they minimize the squared 
error 

• E[w1,…,wn] = ½ dD (yd-hd)2 

where D is the set of training examples 
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Gradient Descent 

Gradient: 
E[w]=[E/w0,… E/wn]  

(w1,w2) 

(w1+w1,w2 +w2) 
w=- E[w] 

wi=- E/wi 

  =- /wi 1/2d(yd-hd)
2 

= - /wi 1/2d(yd-i wi xi)
2 

  = d(yd- hd)(xi)
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Gradient Descent 
Gradient-Descent(training_examples, ) 

 Each training example is a pair of the form <(x1,…xn),t> 
where (x1,…,xn) is the vector of input values, and t is the 
target output value 

• Initialize each wi to some small random value 

• Until the termination condition is met, Do 
• Initialize each wi to zero 

• For each <(x1,…xn),t> in training_examples Do 

• Input the instance (x1,…,xn) to the linear unit and compute the output o 

• For each linear unit weight wi Do 

•  wi= wi + d(yd- hd) xi 



Weight Updation 

• W0=  -0.3 + [(0-0)1+(0-0)1+(0-1)1+(1-0)1]= -0.3 

• W1=  0.5 + [(0-0)0+(0-0)0+(0-1)1+(1-0)1]= 0.5 

• W2=  -0.4 + [(0-0)0+(0-0)1+(0-1)0+(1-0)1]= 0.6 
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X0 X1 X2 Summation Output 

1 0 0 (-1*0.3) + (0*0.5) + (0*0.6) = -0.3 0 

1 0 1 (-1*0.3) + (0*0.5) + (1*0.6) = 0.3 1 

1 1 0 (-1*0.3) + (1*0.5) + (0*0.6) = 0.2 1 

1 1 1 (-1*0.3) + (1*0.5) + (1*0.6) = 0.8 1 

 



Weight Updation 

• W0=  -0.3 + [(0-0)1+(0-1)1+(0-1)1+(1-1)1]= -2.3 

• W1=  0.5 + [(0-0)0+(0-1)0+(0-1)1+(1-1)1]= -0.5 

• W2=  0.6 + [(0-0)0+(0-1)1+(0-1)0+(1-1)1]= -0.4 
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X0 X1 X2 Summation Output 

1 0 0 (-1*2.3) + (-0*0.5) + (-0*0.4) = -2.3 0 

1 0 1 (-1*2.3) + (-0*0.5) + (-1*0.4) = -2.7 0 

1 1 0 (-1*2.3) + (-1*0.5) + (-0*0.4) = -2.8 0 

1 1 1 (-1*2.3) + (-1*0.5) + (-1*0.4) = -3.2 0 

 



Weight Updation 

• W0=  -3.3 + [(0-0)1+(0-0)1+(0-0)1+(1-0)1]= -2.3 

• W1=  0.5 + [(0-0)0+(0-0)0+(0-0)1+(1-0)1]= 1.5 

• W2=  0.6 + [(0-0)0+(0-0)1+(0-0)0+(1-0)1]= 1.6 
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X0 X1 X2 Summation Output 

1 0 0 (-1*2.3) + (0*1.5) + (0*1.6) = -2.3 0 

1 0 1 (-1*2.3) + (0*1.5) + (1*1.6) = -0.7 0 

1 1 0 (-1*2.3) + (1*1.5) + (0*1.6) = -0.8 0 

1 1 1 (-1*2.3) + (1*1.5) + (1*1.6) = 0.8 1 
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Decision Surface of a Perceptron 

+ 

+ 
+ 

+ - 

- 

- 

- 
x1 

x2 

+ 

+ - 

- 

x1 

x2 

•But functions that are not linearly separable (e.g. XOR)  
   XOR can solved as: 
XOR(x1, x2)= AND( OR(x1, x2), NAND(x1, x2)) 
 

Linearly separable Non-Linearly separable 
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Multilayer Perceptron (MLP) 

Wji 

Wkj 

i 

j 

k 
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Multilayer Perceptron (MLP) 

Wji Wkj 

i 

j k 

 
 


d

1i

d

0i

t

jjiij0jiij .x,wwxwwxnet

yj = f(netj) 

 
 


H Hn

1j

n

0j

t

kkjj0kkjjk ,y.wwywwynet zk = f(netk) 
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Multilayer Perceptron (MLP) 



Multilayer Perceptron (MLP) 
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Types of Layers 

• The input layer. 
– Introduces input values into the network. 

– No activation function or other processing. 

• The hidden layer(s). 
– Perform classification of features 

– Two hidden layers are sufficient to solve any problem 

– Features imply more layers may be better 

• The output layer. 
– Functionally just like the hidden layers 

– Outputs are passed on to the world outside the neural network. 
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Activation functions 

• Transforms neuron’s input into output. 

Rectified Linear Unit 
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Backpropagation Algorithm 

    Initialize w to some small random value 

    Do 

• For each training example  <(x1,…xn),t>  Do 
• compute the network outputs ok  

• For each output unit k, compute k=ok(1-ok)(tk-ok) 

• For each hidden unit j, j=oj(1-oj) k wkj k 

• Compute wji=wji+wji    where  wji=  j xi 

• Compute wkj=wkj+wkj   where  wkj= kyj 

Until the termination condition is met. 

Return w 



Universal Function Approximator 

A one hidden layer FFNN with sufficiently large 
number of hidden nodes can approximate any 
function (Hornik, 1991) 
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Handwritten Character Recognition 
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Image size= 100 x 100 
No. of nodes at hidden layer= 106 

 

No. of Classes =26 
No. of Weights to be learned= 1010 

 
 



Shallow vs Deep 

• Functions that can be compactly represented by a 
depth k architecture with fewer computational 
elements might require an larger number of 
computational elements to be represented by a 
depth k − 1 architecture. 

Consequences are:  

   ▪ Computational: We don’t need exponentially 
many elements in the layers  

   ▪ Statistical: poor generalization may be expected 
when using an insufficiently deep architecture for 
representing some functions 
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    Deep Learning 

• Multilayer neural networks have been around for 

   25 years.  What’s actually new? 

 

• We had good algorithms for learning the weights in 
networks with 1  or 2 hidden layer(s) 

 

• But these algorithms are not good at learning the 
weights for networks with more hidden layers  
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Why is this hard? 

You see this:  

But the camera sees this: 
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Pixel-based representation 

Input 

Raw image 

Motorbikes 
“Non”-Motorbikes 

Learning 
algorithm 

pixel 1 

p
ix

el
 2

 

pixel 1 

pixel 2 
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Pixel-based representation 

Input 

Motorbikes 
“Non”-Motorbikes 

Learning 
algorithm 

pixel 1 

p
ix

el
 2

 

pixel 1 

pixel 2 

Raw image 
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Pixel-based representation 

Input 

Motorbikes 
“Non”-Motorbikes 

Learning 
algorithm 

pixel 1 

p
ix

el
 2

 

pixel 1 

pixel 2 

Raw image 
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What we want 

Input 
Motorbikes 
“Non”-Motorbikes 

Learning 
algorithm 

pixel 1 

p
ix

el
 2

 

Feature 
representation 

handlebars 

wheel 
E.g., Does it have Handlebars?  Wheels?  

Handlebars 

W
h

ee
ls

 

Raw image Features 
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Some feature representations 

SIFT Spin image 

HoG 
RIFT 

Textons GLOH 9/16/2018 52 



Some feature representations 

SIFT Spin image 

HoG 
RIFT 

Textons GLOH 

Coming up with features is often difficult, time-
consuming, and requires expert knowledge.  
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The brain:  
potential motivation for deep learning 

[Roe et al., 1992] 

Auditory cortex learns to see! 

Auditory Cortex 
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Feature learning problem 

• Given a 14x14 image patch x, can represent it using 196 
real numbers.  

 

 

 

 

 

• Problem: Can we find a learn a better  feature vector to 
represent this?  

255 
98 
93 
87 
89 
91 
48 
… 
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First stage of visual processing: V1 

V1 is the first stage of visual processing in the brain. 

Neurons in V1 typically modeled as edge detectors:  

Neuron #1 of visual cortex 
(model) 

Neuron #2 of visual cortex 
(model) 
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Learning sensor representations 
 

Sparse coding (Olshausen & Field,1996) 

 

Input: Images x(1), x(2), …, x(m) (each in Rn x n) 
 

Learn: Dictionary of bases f1, f2, …, fk (also Rn x n), so 
that each input x can be approximately decomposed as: 

   x     aj
 fj 

 

             s.t. aj’s are mostly zero (“sparse”)  

 

j=1 

k 
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Sparse coding illustration 
    Natural Images Learned bases (f1 , …, f64):  “Edges” 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

 0.8 *                   + 0.3 *                     + 0.5 * 

     x       0.8 *       f
36         +  0.3 *        f42          

+ 0.5 *       f63 

[a1, …, a64] = [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, 0]  
(feature representation)  

Test example 
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Sparse coding illustration 

     0.6 *                  + 0.8 *                  + 0.4 * 

                                    f15                                 f28                                                 
f

37  

     1.3 *                  + 0.9 *                  + 0.3 * 

                                   f5                                   f18                                               
f

29  

• Method “invents” edge detection 

• Automatically learns to represent an image in terms of the edges that 

appear in it. Gives a more succinct, higher-level representation than the 

raw pixels.  

• Quantitatively similar to primary visual cortex (area V1) in brain.  

Represent as: [a5=1.3, a18=0.9, a29 = 0.3] 

Represent as: [a15=0.6, a28=0.8, a37 = 0.4] 

9/16/2018 59 



Feature 
detectors 
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What features might you expect a good NN 

to learn, when trained with data like this? 
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63 

1 

vertical lines 
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63 

1 

Horizontal lines 
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63 

1 

Small circles 
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63 

1 

Small circles 

But what about position invariance  ??? 

our example unit detectors were tied to  

specific parts of the image   9/16/2018 65 



successive layers can learn higher-level features … 

  
   

  
   

  
   etc … detect lines in 

Specific positions 

  
   v 

  
   

  
   

Higher level detetors 

( horizontal line,  

“RHS vertical lune” 

“upper loop”, etc… 

etc … 
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successive layers can learn higher-level features … 

  
   

  
   

  
   etc … detect lines in 

Specific positions 

  
   v 

  
   

  
   

Higher level detetors 

( horizontal line,  

“RHS vertical lune” 

“upper loop”, etc… 

etc … 

  
   What does this unit detect? 9/16/2018 67 



Going deep 

pixels 

edges 

object parts 
(combination  
of edges) 

object models 

[Honglak Lee] 

Training set: Aligned 
images of faces.  
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New way to train multi-layer NNs… 
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New way to train multi-layer NNs… 

Train this layer first 
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New way to train multi-layer NNs… 

Train this layer first 

then this layer 
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New way to train multi-layer NNs… 

Train this layer first 

then this layer 

then this layer 
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New way to train multi-layer NNs… 

Train this layer first 

then this layer 

then this layer 

then this layer 
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New way to train multi-layer NNs… 

Train this layer first 

then this layer 

then this layer 

then this layer 
finally this layer 9/16/2018 74 



New way to train multi-layer NNs… 

EACH of the (non-output) layers is trained to 

be an autoencoder 

Basically, it is forced to learn good 
features that describe what comes from 
the previous layer 9/16/2018 75 



Autoencoder 
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Autoencoder 
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Deep learning for Images 
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Convolutional Neural Network (CNN) 
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Convolution 

1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

6 x 6 image 

1 -1 -1 

-1 1 -1 

-1 -1 1 

Filter 1 

-1 1 -1 

-1 1 -1 

-1 1 -1 

Filter 2 

……
 

These are the network 

parameters to be learned. 

Each filter detects a 

small pattern (3 x 3).  



Convolution 

1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

6 x 6 image 

1 -1 -1 

-1 1 -1 

-1 -1 1 

Filter 1 

3 -1 

stride=1 

Dot  

product 



Convolution 

1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

6 x 6 image 

1 -1 -1 

-1 1 -1 

-1 -1 1 

Filter 1 

3 -3 

If stride=2 



Convolution 

1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

6 x 6 image 

1 -1 -1 

-1 1 -1 

-1 -1 1 

Filter 1 

3 -1 -3 -1 

-3 1 0 -3 

-3 -3 0 1 

3 -2 -2 -1 

stride=1 



Convolution 

1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

6 x 6 image 

3 -1 -3 -1 

-3 1 0 -3 

-3 -3 0 1 

3 -2 -2 -1 

-1 1 -1 

-1 1 -1 

-1 1 -1 

Filter 2 

-1 -1 -1 -1 

-1 -1 -2 1 

-1 -1 -2 1 

-1 0 -4 3 

Repeat this for each filter 
stride=1 

Two 4 x 4 images 

Forming 2 x 4 x 4 matrix 

Feature 
Map 



Color image: RGB 3 channels 

1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

1 -1 -1 

-1 1 -1 

-1 -1 1 
Filter 1 

-1 1 -1 

-1 1 -1 

-1 1 -1 
Filter 2 

1 -1 -1 

-1 1 -1 

-1 -1 1 

1 -1 -1 

-1 1 -1 

-1 -1 1 

-1 1 -1 

-1 1 -1 

-1 1 -1 

-1 1 -1 

-1 1 -1 

-1 1 -1 
Color image 



1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

image 
convolution 

-1 1 -1 

-1 1 -1 

-1 1 -1 

1 -1 -1 

-1 1 -1 

-1 -1 1 

1x

2x

……
 

36x

……
 

1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

Convolution v.s. Fully Connected 

Fully-

connected 



1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

6 x 6 image 

1 -1 -1 

-1 1 -1 

-1 -1 1 

Filter 1 
1 

2 

3 

…
 

8 

9 
…

 

1

3 14 

15 

…
 

Only connect to 9 
inputs, not fully 
connected 

4: 

10: 

16 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

1 

3 

fewer parameters! 



1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

1 -1 -1 

-1 1 -1 

-1 -1 1 

Filter 1 

1: 

2: 

3: 

…
 

7: 

8: 

9: 
…

 

1

3: 14: 

15: 

…
 

4: 

10: 

16: 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

1 

3 

-1 

Shared weights 

6 x 6 image 

Fewer parameters 

Even fewer parameters 



Max Pooling 

3 -1 -3 -1 

-3 1 0 -3 

-3 -3 0 1 

3 -2 -2 -1 

-1 1 -1 

-1 1 -1 

-1 1 -1 

Filter 2 

-1 -1 -1 -1 

-1 -1 -2 1 

-1 -1 -2 1 

-1 0 -4 3 

1 -1 -1 

-1 1 -1 

-1 -1 1 

Filter 1 



Why Pooling? 

• Subsampling pixels will not change the object 

Subsampling 

bird 

bird 

We can subsample the pixels to make image 

smaller 
fewer parameters to characterize the image 



A CNN compresses a fully 
connected network in two ways 
• Reducing number of connections 

• Shared weights on the edges 

• Max pooling further reduces the complexity 



Max Pooling 

1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

6 x 6 image 

3 0 

1 3 

-1 1 

3 0 

2 x 2 image 

Each filter  

is a channel 

New image  

but smaller 

Conv 

Max 
Pooling 



Flattening 

3 0 

1 3 

-1 1 

3 0 Flattened 

3 

0 

1 

3 

-1 

1 

0 

3 

Fully Connected 
Feedforward network 



Convolutional Neural Network (CNN) 

• Compared to standard feedforward neural networks with 
similarly-sized layers,  

   ▪ CNNs have much fewer connections and parameters  

   ▪ and so they are easier to train,  

   ▪ while their theoretically-best performance is likely to be   
only slightly worse. 
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CNN in speech recognition 

Time 

F
re

q
u
e
n
c
y
 

Spectrogram 

CNN 

Image 

The filters move in the 

frequency direction. 



Challenges 

• How to decide the number of hidden layers and 
nodes? 

• Choosing suitable deep learning architecture for a 
given data 

• Choosing suitable error function 
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Thanks 
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