

Visit to
Neural Network to

Deep Learning

 R. K. Agrawal

School of Computer and Systems Sciences

Jawaharlal Nehru University

NewDelhi-110067

1 9/16/2018

Outline

• Typical goal of machine Learning

• Neural Network

• Deep learning

• Some common deep learning algorithms

*Many of slides adapted from Andrew Ng and G . Hinton

9/16/2018 2

Typical goal of machine learning

Label: “Motorcycle”
Suggest tags
Image search
…

Speech recognition
Music classification
Speaker identification
…

Web search
Anti-spam
Machine translation
…

text

audio

images/video

input output

ML

ML

ML

9/16/2018 3

Typical goal of machine learning

Label: “Motorcycle”
Suggest tags
Image search
…

Speech recognition
Music classification
Speaker identification
…

Web search
Anti-spam
Machine translation
…

text

audio

images/video

input output

ML

ML

ML

Feature engineering:
most time consuming!

9/16/2018 4

Kaalia Amitabh Bachchan Dialogues.mp3

Our goal in object classification

“motorcycle” ML

9/16/2018 5

Face Recognition

 Fingerprint recognition

8

Optical Character Recognition

A

B

E

D

C

Output
Layer

Input
Layer

Hidden
Layer

Detection of Oil Slicks

• Given radar satellite images of coastal waters

 Problem: Detect Oil Slicks

9

10

11

12

13

14

15

16

Apple

Banana

Mango

17

Apple

Banana

Mango

Fruit

Name of Fruit

f(Fruit) Name of Fruit

Classification

Feature Vector Fruit_type

Color Shape

Red Elliptical Apple

Yellow Elongated Banana

Yellow Elliptical Mango

Green Elliptical

Mango

Green Elongated

Banana

9/16/2018 18

f(Feature_vec) Fruit_type

 Classification

x

2

1

x

x

height

weight

2X

Training examples)},(,),,{(11 ll yy xx

1x

2x

Jy

19

Hy

Jy

Classification

x

2

1

x

x

height

weight

2X

Training examples)},(,),,{(11 ll yy xx

1x

2x

Jy

20

Hy

Jy

Di = distance(x, xi),
i=1,2,…,l

 Classification

x

2

1

x

x

height

weight

2X

Training examples)},(,),,{(11 ll yy xx

1x

2x

Jy

Hy
Linear classifier:

0)(

0)(
)(

0

0

wifJ

wifH
f

xw

xw
x

w.x + w0 = 0

Classification: Definition

• Given a collection of records (training set)
• Each record contains a set of attributes, one of the attributes is the

class label.

• Find a model for class attribute as a function of the
values of other attributes.

• Goal: previously unseen records should be assigned
a class as accurately as possible.

YX :q

23

Neural Network

02211 wwxwxwxz KK

Elements of Neural Network

𝑓: 𝑅𝐾 → 𝑅

z

1w

2w

Kw…

1x

2x

Kx

0w

bias

Activation
function weights

Neuron

h(z)

02211 wwxwxwxz KK

Single Perceptron

z

1w

2w

Kw…

1x

2x

Kx

0w 1 if wi xi > 0
 h(z)=
 0 otherwise

h(z)

26

Training Perceptrons

•Initialize with random weight values

th= 0.0

X2

X1

X0

W0 = ?

W2 = ?

W1 = ?

For AND

X1 X2 y

0 0 0

0 1 0

1 0 0

1 1 1

27

Training Perceptrons

th= 0.0

X2

X1

X0

W0 = -0.3

W2 = -0.4

W1 = 0.5

X0 X1 X2 Summation Output

1 0 0 (-1*0.3) + (0*0.5) + (0*-0.4) = -0.3 0

1 0 1 (-1*0.3) + (0*0.5) + (1*-0.4) = -0.7 0

1 1 0 (-1*0.3) + (1*0.5) + (0*-0.4) = 0.2 1

1 1 1 (-1*0.3) + (1*0.5) + (1*-0.4) = -0.2 0

For AND

X1 X2 y

0 0 0

0 1 0

1 0 0

1 1 1

28

Gradient Descent Learning Rule

• Train the wi’s such that they minimize the squared
error

• E[w1,…,wn] = ½ dD (yd-hd)2

where D is the set of training examples

29

Gradient Descent

Gradient:
E[w]=[E/w0,… E/wn]

(w1,w2)

(w1+w1,w2 +w2)
w=- E[w]

wi=- E/wi

 =- /wi 1/2d(yd-hd)
2

= - /wi 1/2d(yd-i wi xi)
2

 = d(yd- hd)(xi)

30

Gradient Descent
Gradient-Descent(training_examples,)

 Each training example is a pair of the form <(x1,…xn),t>
where (x1,…,xn) is the vector of input values, and t is the
target output value

• Initialize each wi to some small random value

• Until the termination condition is met, Do
• Initialize each wi to zero

• For each <(x1,…xn),t> in training_examples Do

• Input the instance (x1,…,xn) to the linear unit and compute the output o

• For each linear unit weight wi Do

• wi= wi + d(yd- hd) xi

Weight Updation

• W0= -0.3 + [(0-0)1+(0-0)1+(0-1)1+(1-0)1]= -0.3

• W1= 0.5 + [(0-0)0+(0-0)0+(0-1)1+(1-0)1]= 0.5

• W2= -0.4 + [(0-0)0+(0-0)1+(0-1)0+(1-0)1]= 0.6

31

X0 X1 X2 Summation Output

1 0 0 (-1*0.3) + (0*0.5) + (0*0.6) = -0.3 0

1 0 1 (-1*0.3) + (0*0.5) + (1*0.6) = 0.3 1

1 1 0 (-1*0.3) + (1*0.5) + (0*0.6) = 0.2 1

1 1 1 (-1*0.3) + (1*0.5) + (1*0.6) = 0.8 1

Weight Updation

• W0= -0.3 + [(0-0)1+(0-1)1+(0-1)1+(1-1)1]= -2.3

• W1= 0.5 + [(0-0)0+(0-1)0+(0-1)1+(1-1)1]= -0.5

• W2= 0.6 + [(0-0)0+(0-1)1+(0-1)0+(1-1)1]= -0.4

32

X0 X1 X2 Summation Output

1 0 0 (-1*2.3) + (-0*0.5) + (-0*0.4) = -2.3 0

1 0 1 (-1*2.3) + (-0*0.5) + (-1*0.4) = -2.7 0

1 1 0 (-1*2.3) + (-1*0.5) + (-0*0.4) = -2.8 0

1 1 1 (-1*2.3) + (-1*0.5) + (-1*0.4) = -3.2 0

Weight Updation

• W0= -3.3 + [(0-0)1+(0-0)1+(0-0)1+(1-0)1]= -2.3

• W1= 0.5 + [(0-0)0+(0-0)0+(0-0)1+(1-0)1]= 1.5

• W2= 0.6 + [(0-0)0+(0-0)1+(0-0)0+(1-0)1]= 1.6

33

X0 X1 X2 Summation Output

1 0 0 (-1*2.3) + (0*1.5) + (0*1.6) = -2.3 0

1 0 1 (-1*2.3) + (0*1.5) + (1*1.6) = -0.7 0

1 1 0 (-1*2.3) + (1*1.5) + (0*1.6) = -0.8 0

1 1 1 (-1*2.3) + (1*1.5) + (1*1.6) = 0.8 1

34

Decision Surface of a Perceptron

+

+
+

+ -

-

-

-
x1

x2

+

+ -

-

x1

x2

•But functions that are not linearly separable (e.g. XOR)
 XOR can solved as:
XOR(x1, x2)= AND(OR(x1, x2), NAND(x1, x2))

Linearly separable Non-Linearly separable

35

Multilayer Perceptron (MLP)

Wji

Wkj

i

j

k

36

Multilayer Perceptron (MLP)

Wji Wkj

i

j k

d

1i

d

0i

t

jjiij0jiij .x,wwxwwxnet

yj = f(netj)

H Hn

1j

n

0j

t

kkjj0kkjjk ,y.wwywwynet zk = f(netk)

9/16/2018 37

c

k

kk ztztwJ
1

22

2

1
)(

2

1
)(

w

J
w

kj

k
k

kj

k

kkj w

net

w

net
.

net

J

w

J

)net('f)zt(
net

z
.

z

J

net

J
kkk

k

k

kk

k

j

kj

k y
w

net

wkj = kyj = (tk – zk) f’ (netk)yj

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP)

9/16/2018 38

ji

j

j

j

jji w

net
.

net

y
.

y

J

w

J

c

1k

c

1k

kjkkk

j

k

k

k
kk

c

1k j

k
kk

2

k

c

1k

k

jj

w)net('f)zt(
y

net
.

net

z
)zt(

y

z
)zt()zt(

2

1

yy

J

c

1k

kkjjj w)net('f

 ijkkjjiji x)net('f wxw

j

39

Types of Layers

• The input layer.
– Introduces input values into the network.

– No activation function or other processing.

• The hidden layer(s).
– Perform classification of features

– Two hidden layers are sufficient to solve any problem

– Features imply more layers may be better

• The output layer.
– Functionally just like the hidden layers

– Outputs are passed on to the world outside the neural network.

40

Activation functions

• Transforms neuron’s input into output.

Rectified Linear Unit

41

Backpropagation Algorithm

 Initialize w to some small random value

 Do

• For each training example <(x1,…xn),t> Do
• compute the network outputs ok

• For each output unit k, compute k=ok(1-ok)(tk-ok)

• For each hidden unit j, j=oj(1-oj) k wkj k

• Compute wji=wji+wji where wji= j xi

• Compute wkj=wkj+wkj where wkj= kyj

Until the termination condition is met.

Return w

Universal Function Approximator

A one hidden layer FFNN with sufficiently large
number of hidden nodes can approximate any
function (Hornik, 1991)

9/16/2018 42

Handwritten Character Recognition

9/16/2018 43

Image size= 100 x 100
No. of nodes at hidden layer= 106

No. of Classes =26
No. of Weights to be learned= 1010

Shallow vs Deep

• Functions that can be compactly represented by a
depth k architecture with fewer computational
elements might require an larger number of
computational elements to be represented by a
depth k − 1 architecture.

Consequences are:

 ▪ Computational: We don’t need exponentially
many elements in the layers

 ▪ Statistical: poor generalization may be expected
when using an insufficiently deep architecture for
representing some functions

9/16/2018 44

45 9/16/2018

 Deep Learning

• Multilayer neural networks have been around for

 25 years. What’s actually new?

• We had good algorithms for learning the weights in
networks with 1 or 2 hidden layer(s)

• But these algorithms are not good at learning the
weights for networks with more hidden layers

9/16/2018 46

Why is this hard?

You see this:

But the camera sees this:

9/16/2018 47

Pixel-based representation

Input

Raw image

Motorbikes
“Non”-Motorbikes

Learning
algorithm

pixel 1

p
ix

el
 2

pixel 1

pixel 2

9/16/2018 48

Pixel-based representation

Input

Motorbikes
“Non”-Motorbikes

Learning
algorithm

pixel 1

p
ix

el
 2

pixel 1

pixel 2

Raw image

9/16/2018 49

Pixel-based representation

Input

Motorbikes
“Non”-Motorbikes

Learning
algorithm

pixel 1

p
ix

el
 2

pixel 1

pixel 2

Raw image

9/16/2018 50

What we want

Input
Motorbikes
“Non”-Motorbikes

Learning
algorithm

pixel 1

p
ix

el
 2

Feature
representation

handlebars

wheel
E.g., Does it have Handlebars? Wheels?

Handlebars

W
h

ee
ls

Raw image Features

9/16/2018 51

Some feature representations

SIFT Spin image

HoG
RIFT

Textons GLOH 9/16/2018 52

Some feature representations

SIFT Spin image

HoG
RIFT

Textons GLOH

Coming up with features is often difficult, time-
consuming, and requires expert knowledge.

9/16/2018 53

The brain:
potential motivation for deep learning

[Roe et al., 1992]

Auditory cortex learns to see!

Auditory Cortex

9/16/2018 54

Feature learning problem

• Given a 14x14 image patch x, can represent it using 196
real numbers.

• Problem: Can we find a learn a better feature vector to
represent this?

255
98
93
87
89
91
48
…

9/16/2018 55

First stage of visual processing: V1

V1 is the first stage of visual processing in the brain.

Neurons in V1 typically modeled as edge detectors:

Neuron #1 of visual cortex
(model)

Neuron #2 of visual cortex
(model)

9/16/2018 56

Learning sensor representations

Sparse coding (Olshausen & Field,1996)

Input: Images x(1), x(2), …, x(m) (each in Rn x n)

Learn: Dictionary of bases f1, f2, …, fk (also Rn x n), so
that each input x can be approximately decomposed as:

 x aj
 fj

 s.t. aj’s are mostly zero (“sparse”)

j=1

k

9/16/2018 57

Sparse coding illustration
 Natural Images Learned bases (f1 , …, f64): “Edges”

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

 0.8 * + 0.3 * + 0.5 *

 x 0.8 * f
36 + 0.3 * f42

+ 0.5 * f63

[a1, …, a64] = [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, 0]
(feature representation)

Test example

9/16/2018 58

Sparse coding illustration

 0.6 * + 0.8 * + 0.4 *

 f15 f28
f

37

 1.3 * + 0.9 * + 0.3 *

 f5 f18
f

29

• Method “invents” edge detection

• Automatically learns to represent an image in terms of the edges that

appear in it. Gives a more succinct, higher-level representation than the

raw pixels.

• Quantitatively similar to primary visual cortex (area V1) in brain.

Represent as: [a5=1.3, a18=0.9, a29 = 0.3]

Represent as: [a15=0.6, a28=0.8, a37 = 0.4]

9/16/2018 59

Feature
detectors

9/16/2018 60

What features might you expect a good NN

to learn, when trained with data like this?

9/16/2018 61

63

1

vertical lines

9/16/2018 62

63

1

Horizontal lines

9/16/2018 63

63

1

Small circles

9/16/2018 64

63

1

Small circles

But what about position invariance ???

our example unit detectors were tied to

specific parts of the image 9/16/2018 65

successive layers can learn higher-level features …

 etc … detect lines in

Specific positions

 v

Higher level detetors

(horizontal line,

“RHS vertical lune”

“upper loop”, etc…

etc …

9/16/2018 66

successive layers can learn higher-level features …

 etc … detect lines in

Specific positions

 v

Higher level detetors

(horizontal line,

“RHS vertical lune”

“upper loop”, etc…

etc …

 What does this unit detect? 9/16/2018 67

Going deep

pixels

edges

object parts
(combination
of edges)

object models

[Honglak Lee]

Training set: Aligned
images of faces.

9/16/2018 68

New way to train multi-layer NNs…

9/16/2018 69

New way to train multi-layer NNs…

Train this layer first

9/16/2018 70

New way to train multi-layer NNs…

Train this layer first

then this layer

9/16/2018 71

New way to train multi-layer NNs…

Train this layer first

then this layer

then this layer

9/16/2018 72

New way to train multi-layer NNs…

Train this layer first

then this layer

then this layer

then this layer
9/16/2018 73

New way to train multi-layer NNs…

Train this layer first

then this layer

then this layer

then this layer
finally this layer 9/16/2018 74

New way to train multi-layer NNs…

EACH of the (non-output) layers is trained to

be an autoencoder

Basically, it is forced to learn good
features that describe what comes from
the previous layer 9/16/2018 75

Autoencoder

9/16/2018 76

Autoencoder

9/16/2018 77

Deep learning for Images

9/16/2018 78

Convolutional Neural Network (CNN)

9/16/2018 79

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

……

These are the network

parameters to be learned.

Each filter detects a

small pattern (3 x 3).

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1

stride=1

Dot

product

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -3

If stride=2

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1

Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for each filter
stride=1

Two 4 x 4 images

Forming 2 x 4 x 4 matrix

Feature
Map

Color image: RGB 3 channels

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1
Filter 1

-1 1 -1

-1 1 -1

-1 1 -1
Filter 2

1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1
Color image

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

image
convolution

-1 1 -1

-1 1 -1

-1 1 -1

1 -1 -1

-1 1 -1

-1 -1 1

1x

2x

……

36x

……

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

Convolution v.s. Fully Connected

Fully-

connected

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1
1

2

3

…

8

9
…

1

3 14

15

…

Only connect to 9
inputs, not fully
connected

4:

10:

16

1

0

0

0

0

1

0

0

0

0

1

1

3

fewer parameters!

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

1:

2:

3:

…

7:

8:

9:
…

1

3: 14:

15:

…

4:

10:

16:

1

0

0

0

0

1

0

0

0

0

1

1

3

-1

Shared weights

6 x 6 image

Fewer parameters

Even fewer parameters

Max Pooling

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

Why Pooling?

• Subsampling pixels will not change the object

Subsampling

bird

bird

We can subsample the pixels to make image

smaller
fewer parameters to characterize the image

A CNN compresses a fully
connected network in two ways
• Reducing number of connections

• Shared weights on the edges

• Max pooling further reduces the complexity

Max Pooling

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 0

1 3

-1 1

3 0

2 x 2 image

Each filter

is a channel

New image

but smaller

Conv

Max
Pooling

Flattening

3 0

1 3

-1 1

3 0 Flattened

3

0

1

3

-1

1

0

3

Fully Connected
Feedforward network

Convolutional Neural Network (CNN)

• Compared to standard feedforward neural networks with
similarly-sized layers,

 ▪ CNNs have much fewer connections and parameters

 ▪ and so they are easier to train,

 ▪ while their theoretically-best performance is likely to be
only slightly worse.

9/16/2018 94

CNN in speech recognition

Time

F
re

q
u
e
n
c
y

Spectrogram

CNN

Image

The filters move in the

frequency direction.

Challenges

• How to decide the number of hidden layers and
nodes?

• Choosing suitable deep learning architecture for a
given data

• Choosing suitable error function

9/16/2018 96

References

• Neural Networks for Pattern Recognition”, Bishop,

C.M., 1996

• Deep Belief Nets, 2007 NIPS tutorial , G . Hinton

• Slides adapted from Andrew NG and G . Hinton

• https://www.macs.hw.ac.uk/~dwcorne/

• https://cs.uwaterloo.ca/~mli/

• cs231n.stanford.edu/slides/2017/

9/16/2018 97

https://www.macs.hw.ac.uk/~dwcorne/
https://cs.uwaterloo.ca/~mli/

Thanks

9/16/2018 98

