Visit to Neural Network to Deep Learning

R. K. Agrawal School of Computer and Systems Sciences Jawaharlal Nehru University NewDelhi-110067

1

Outline

- Typical goal of machine Learning
- Neural Network
- Deep learning
- Some common deep learning algorithms

*Many of slides adapted from Andrew Ng and G . Hinton

Typical goal of machine learning

<u>input</u>

images/video

Label: "Motorcycle" Suggest tags Image search

output

Speech recognition Music classification Speaker identification

text

audio

Web search Anti-spam Machine translation

. . .

Our goal in object classification

Face Recognition

Fingerprint recognition

Optical Character Recognition

Detection of Oil Slicks

• Given radar satellite images of coastal waters Problem: **Detect Oil Slicks**

f(Feature_vec) -----> Fruit_type

Feature Vector		Fruit_type
Color	Shape	
Red	Elliptical	Apple
Yellow	Elongated	Banana
Yellow	Elliptical	Mango
Green	Elliptical	Mango
Green	Elongated	Banana

20

 X_1

Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of *attributes*, one of the attributes is the *class* label.
- Find a *model* for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.

Neural Network

Elements of Neural Network

Neuron $f: \mathbb{R}^K \to \mathbb{R}$

Single Perceptron

Training Perceptrons

Initialize with random weight values

Training Perceptrons

Xo	X_1	X ₂	Summation	Output
1	0	0	(-1*0.3) + (0*0.5) + (0*-0.4) = -0.3	0
1	0	1	(-1*0.3) + (0*0.5) + (1*-0.4) = -0.7	0
1	1	0	(-1*0.3) + (1*0.5) + (0*-0.4) = 0.2	1
1	1	1	(-1*0.3) + (1*0.5) + (1*-0.4) = -0.2	0

Gradient Descent Learning Rule

Train the w_i's such that they minimize the squared error

•
$$E[w_1,...,w_n] = \frac{1}{2} \sum_{d \in D} (y_d - h_d)^2$$

where D is the set of training examples

Gradient Descent

Gradient Descent

Gradient-Descent(*training_examples*, η)

Each training example is a pair of the form $<(x_1,...,x_n),t>$ where $(x_1,...,x_n)$ is the vector of input values, and t is the target output value

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero
 - For each <(x₁,...x_n),t> in *training_examples* Do
 - Input the instance $(x_1, ..., x_n)$ to the linear unit and compute the output o
 - For each linear unit weight w_i Do
 - $\Delta w_i = \Delta w_i + \sum_d (y_d h_d) x_i$

Weight Updation

- $W_0 = -0.3 + [(0-0)1+(0-0)1+(0-1)1+(1-0)1] = -0.3$
- $W_1 = 0.5 + [(0-0)0+(0-0)0+(0-1)1+(1-0)1] = 0.5$
- $W_2 = -0.4 + [(0-0)0+(0-0)1+(0-1)0+(1-0)1] = 0.6$

X ₀	X_1	X ₂	Summation	Output
1	0	0	(-1*0.3) + (0*0.5) + (0*0.6) = -0.3	0
1	0	1	(-1*0.3) + (0*0.5) + (1*0.6) = 0.3	1
1	1	0	(-1*0.3) + (1*0.5) + (0*0.6) = 0.2	1
1	1	1	(-1*0.3) + (1*0.5) + (1*0.6) = 0.8	1

Weight Updation

- $W_0 = -0.3 + [(0-0)1+(0-1)1+(0-1)1+(1-1)1] = -2.3$
- $W_1 = 0.5 + [(0-0)0+(0-1)0+(0-1)1+(1-1)1] = -0.5$
- $W_2 = 0.6 + [(0-0)0+(0-1)1+(0-1)0+(1-1)1] = -0.4$

Xo	X_1	X ₂	Summation	Output
1	0	0	(-1*2.3) + (-0*0.5) + (-0*0.4) = -2.3	0
1	0	1	(-1*2.3) + (-0*0.5) + (-1*0.4) = -2.7	0
1	1	0	(-1*2.3) + (-1*0.5) + (-0*0.4) = -2.8	0
1	1	1	(-1*2.3) + (-1*0.5) + (-1*0.4) = -3.2	0

Weight Updation

- $W_0 = -3.3 + [(0-0)1+(0-0)1+(0-0)1+(1-0)1] = -2.3$
- $W_1 = 0.5 + [(0-0)0+(0-0)0+(0-0)1+(1-0)1] = 1.5$
- $W_2 = 0.6 + [(0-0)0+(0-0)1+(0-0)0+(1-0)1] = 1.6$

Xo	X_1	X ₂	Summation	Output
1	0	0	(-1*2.3) + (0*1.5) + (0*1.6) = -2.3	0
1	0	1	(-1*2.3) + (0*1.5) + (1*1.6) = -0.7	0
1	1	0	(-1*2.3) + (1*1.5) + (0*1.6) = -0.8	0
1	1	1	(-1*2.3) + (1*1.5) + (1*1.6) = 0.8	1

Decision Surface of a Perceptron

Linearly separable

Non-Linearly separable

But functions that are not linearly separable (e.g. XOR) XOR can solved as:
XOR(x₁, x₂)= AND(OR(x₁, x₂), NAND(x₁, x₂))

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP)

$$J(w) = \frac{1}{2} \sum_{k=1}^{c} (t_{k} - z_{k})^{2} = \frac{1}{2} ||t - z||^{2}$$

$$\Delta w = -\eta \frac{\partial J}{\partial w}$$

$$\frac{\partial J}{\partial w_{ki}} = \frac{\partial J}{\partial net_{k}} \cdot \frac{\partial net_{k}}{\partial w_{ki}} = -\delta_{k} \frac{\partial net_{k}}{\partial w_{ki}}$$

$$\delta_{k} = -\frac{\partial J}{\partial net_{k}} = -\frac{\partial J}{\partial z_{k}} \cdot \frac{\partial z_{k}}{\partial net_{k}} = (t_{k} - z_{k})f'(net_{k})$$

$$\frac{\partial net_{k}}{\partial w_{kj}} = y_{j}$$

$$\Delta w_{kj} = \eta \delta_{k} y_{j} = \eta (t_{k} - z_{k})f'(net_{k}) y_{j}$$

Multilayer Perceptron (MLP)

$$\frac{\partial J}{\partial w_{ji}} = \frac{\partial J}{\partial y_{j}} \cdot \frac{\partial y_{j}}{\partial net_{j}} \cdot \frac{\partial net_{j}}{\partial w_{ji}}$$
$$\frac{\partial J}{\partial y_{j}} = \frac{\partial}{\partial y_{j}} \left[\frac{1}{2} \sum_{k=1}^{c} (t_{k} - z_{k})^{2} \right] = -\sum_{k=1}^{c} (t_{k} - z_{k}) \frac{\partial z_{k}}{\partial y_{j}}$$
$$= -\sum_{k=1}^{c} (t_{k} - z_{k}) \frac{\partial z_{k}}{\partial net_{k}} \cdot \frac{\partial net_{k}}{\partial y_{j}} = -\sum_{k=1}^{c} (t_{k} - z_{k}) f'(net_{k}) w_{kj}$$
$$\delta_{j} = f'(net_{j}) \sum_{k=1}^{c} w_{kj} \delta_{k}$$

$$\Delta w_{ji} = \eta x_i \delta_j = \eta \left[\underbrace{\Sigma w_{kj} \delta_k}_{\delta_j} f'(net_j) x_i \right]_{\delta_j}$$

Types of Layers

- The input layer.
 - Introduces input values into the network.
 - No activation function or other processing.
- The hidden layer(s).
 - Perform classification of features
 - Two hidden layers are sufficient to solve any problem
 - Features imply more layers may be better
- The output layer.
 - Functionally just like the hidden layers
 - Outputs are passed on to the world outside the neural network.

Activation functions

• Transforms neuron's input into output.

Backpropagation Algorithm

Initialize w to some small random value

Do

- For each training example <(x₁,...x_n),t> Do
 - compute the network outputs o_k
 - For each output unit k, compute $\delta_k = o_k(1-o_k)(t_k-o_k)$
 - For each hidden unit j, $\delta_j = o_j (1 o_j) \sum_k w_{kj} \delta_k$
 - Compute w_{ji}=w_{ji}+ Δ w_{ji} where Δ w_{ji}= $\eta \delta_j x_i$
 - Compute $w_{kj}=w_{kj}+\Delta w_{kj}$ where $\Delta w_{kj}=\eta \delta_k y_j$ Until the termination condition is met. Return **w**

Universal Function Approximator

A one hidden layer FFNN with sufficiently large number of hidden nodes can approximate any function (Hornik, 1991)

Handwritten Character Recognition

Image size= 100 x 100 No. of nodes at hidden layer= 10⁶

No. of Classes =26 No. of Weights to be learned= 10^{10}

Shallow vs Deep

 Functions that can be compactly represented by a depth k architecture with fewer computational elements might require an larger number of computational elements to be represented by a depth k – 1 architecture.

Consequences are:

 Computational: We don't need exponentially many elements in the layers

 Statistical: poor generalization may be expected when using an insufficiently deep architecture for representing some functions

10 BREAKTHROUGH TECHNOLOGIES 2013

Deep Learning	Temporary Social Media	Prenatal DNA Sequencing	Additive Manufacturing	Baxter: The Blue- Collar Robot		
With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.	Messages that quickly self-destruct could enhance the privacy of online communications and make people freer to be spontaneous.	Reading the DNA of fetuses will be the next frontier of the genomic revolution. But do you really want to know about the genetic problems or musical aptitude of your unborn child? →	Skeptical about 3-D printing? GE, the world's largest manufacturer, is on the verge of using the technology to make jet parts. →	Rodney Brooks's newest creation is easy to interact with, but the complex innovations behind the robot show just how hard it is to get along with people.		
Memory Implants	Smart Watches	Ultra-Efficient Solar Power	Big Data from Cheap Phones	Supergrids		
A maverick neuroscientist believes he has deciphered the code by which the brain forms long-term memories. Next: testing a prosthetic implant for people suffering from long- term memory loss.	The designers of the Pebble watch realized that a mobile phone is more useful if you don't have to take it out of your pocket.	Doubling the efficiency of a solar cell would completely change the economics of renewable energy. Nanotechnology just might make it possible. →	Collecting and analyzing information from simple cell phones can provide surprising insights into how people move about and behave – and even help us understand the spread of diseases.	A new high-power circuit breaker could finally make highly efficient DC power grids practical. 45		

Deep Learning

- Multilayer neural networks have been around for 25 years. What's actually new?
- We had good algorithms for learning the weights in networks with 1 or 2 hidden layer(s)
- But these algorithms are not good at learning the weights for networks with more hidden layers

Why is this hard?

You see this:

But the camera sees this:

194	4 210	201	212	199	213	215	195	178	158	182	209
180	189	190	221	209	205	191	167	147	115	129	163
11.	4 126	140	188	176	165	152	140	170	106	78	88
8'	7 103	115	154	143	142	149	153	173	101	57	57
102	2 112	106	131	122	138	152	147	128	84	58	66
9.	4 95	79	104	105	124	129	113	107	87	69	67
68	3 71	69	98	89	92	98	95	89	88	76	67
4	1 56	68	99	63	45	60	82	58	76	75	65
20	3 43	69	75	56	41	51	73	55	70	63	44
50	0 50	57	69	75	75	73	74	53	68	59	37
7:	2 59	53	66	84	92	84	74	57	72	63	42
6'	7 61	58	65	75	78	76	73	59	75	69	50

......

Pixel-based representation

pixel 1

Pixel-based representation

pixel 1

Pixel-based representation

pixel 1

What we want

Some feature representations

(a)

(b)

52

(e)

3π/4

(d)

 $\pi/2$

(c)

GLOH

Some feature representations

Coming up with features is often difficult, timeconsuming, and requires expert knowledge.

The brain: potential motivation for deep learning

Auditory cortex learns to see!

Feature learning problem

Given a 14x14 image patch x, can represent it using 196 real numbers.

• Problem: Can we find a learn a better feature vector to represent this?

First stage of visual processing: V1

V1 is the first stage of visual processing in the brain. Neurons in V1 typically modeled as edge detectors:

Neuron #1 of visual cortex (model)

Neuron #2 of visual cortex (model)

Learning sensor representations

Sparse coding (Olshausen & Field, 1996)

Input: Images $x^{(1)}$, $x^{(2)}$, ..., $x^{(m)}$ (each in $\mathbb{R}^{n \times n}$)

Learn: Dictionary of bases ϕ_1 , ϕ_2 , ..., ϕ_k (also $\mathbb{R}^{n \times n}$), so that each input x can be approximately decomposed as: $x \approx \sum_{j=1}^k a_j \phi_j$

s.t. a_i's are mostly zero ("sparse")

Sparse coding illustration

Sparse coding illustration

Method "invents" edge detection

• Automatically learns to represent an image in terms of the edges that appear in it. Gives a more succinct, higher-level representation than the raw pixels.

• Quantitatively similar to primary visual cortex (area V1) in brain. 59

Figure 1.2: Examples of handwritten digits from postal envelopes.

Feature detectors

9/16/2018

What features might you expect a good NN to learn, when trained with data like this?

But what about position invariance ??? our example unit detectors were tied to specific parts of the image

successive layers can learn higher-level features ...

successive layers can learn higher-level features ...

Going deep

Training set: Aligned images of faces.

pixels

edges

object parts

object models

object parts (combination of edges)

9/16/2018

Train this layer first

Train this layer first

then this layer

Train this layer first

then this layer

then this layer
New way to train multi-layer NNs...

Train this layer first

then this layer

then this laver

then this layer

New way to train multi-layer NNs...

Train this layer first

then this layer

then this laver

then **this** laver finally **this** layer₇₄

9/16/2018

New way to train multi-layer NNs...

EACH of the (non-output) layers is trained to be an **autoencoder**

Basically, it is forced to learn good features that describe what comes from the previous layer

9/16/2018

Autoencoder

Autoencoder

Deep learning for Images

Convolutional Neural Network (CNN)

These are the network parameters to be learned.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Each filter detects a small pattern (3 x 3).

-1

-1

1

1

-1

-1

Filter 1

stride=1

6 x 6 image

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -3

6 x 6 image

stride=1

6 x 6 image

Filter 1

Filter 2

stride=1

6 x 6 image

Repeat this for each filter

Two 4 x 4 images Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels

Convolution v.s. Fully Connected

Fullyconnected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Fewer parameters

Even fewer parameters

Max Pooling

Filter 1

Filter 2

Why Pooling?

Subsampling pixels will not change the object

bird

We can subsample the pixels to make image fewer parameters to characterize the image

A CNN compresses a fully connected network in two ways

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

Max Pooling

Each filter is a channel

Convolutional Neural Network (CNN)

- Compared to standard feedforward neural networks with similarly-sized layers,
 - CNNs have much fewer connections and parameters
 - and so they are easier to train,

 while their theoretically-best performance is likely to be only slightly worse.

CNN in speech recognition

Challenges

- How to decide the number of hidden layers and nodes?
- Choosing suitable deep learning architecture for a given data
- Choosing suitable error function

References

- Neural Networks for Pattern Recognition", Bishop, C.M., 1996
- Deep Belief Nets, 2007 NIPS tutorial, G. Hinton
- Slides adapted from Andrew NG and G . Hinton
- https://www.macs.hw.ac.uk/~dwcorne/
- <u>https://cs.uwaterloo.ca/~mli/</u>
- cs231n.stanford.edu/slides/2017/

Thanks